25 research outputs found

    Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities

    Full text link
    We examine in detail the relative equilibria in the four-vortex problem where two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and \Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is that for m > 0, the convex configurations all contain a line of symmetry, forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case exists only when m is positive. In fact, there exist asymmetric convex configurations when m < 0. In contrast to the Newtonian four-body problem with two equal pairs of masses, where the symmetry of all convex central configurations is unproven, the equations in the vortex case are easier to handle, allowing for a complete classification of all solutions. Precise counts on the number and type of solutions (equivalence classes) for different values of m, as well as a description of some of the bifurcations that occur, are provided. Our techniques involve a combination of analysis and modern and computational algebraic geometry

    Volumes of polytopes in spaces of constant curvature

    Full text link
    We overview the volume calculations for polyhedra in Euclidean, spherical and hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary tetrahedron in H3H^3 and S3S^3. We also present some results, which provide a solution for Seidel problem on the volume of non-Euclidean tetrahedron. Finally, we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmagupta formula for the area of such quadrilateral. We also present a formula for the area of a hyperbolic trapezoid.Comment: 22 pages, 9 figures, 58 reference

    The Ks-band Tully-Fisher Relation - A Determination of the Hubble Parameter from 218 ScI Galaxies and 16 Galaxy Clusters

    Full text link
    The value of the Hubble Parameter (H0) is determined using the morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope and zero point are determined using 36 calibrator galaxies with ScI morphology. Calibration distances are adopted from direct Cepheid distances, and group or companion distances derived with the Surface Brightness Fluctuation Method or Type Ia Supernova. Distances are determined to 16 galaxy clusters and 218 ScI galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a weighted mean Hubble Parameter of H0=84.2 +/-6 km s-1 Mpc-1 is found. From the 218 ScI galaxies a Hubble Parameter of H0=83.4 +/-8 km s-1 Mpc-1 is found. When the zero point of the K-TFR is corrected to account for recent results that find a Large Magellanic Cloud distance modulus of 18.39 +/-0.05 a Hubble Parameter of 88.0 +/-6 km s-1 Mpc-1 is found. A comparison with the results of the Hubble Key Project (Freedman et al 2001) is made and discrepancies between the K-TFR distances and the HKP I-TFR distances are discussed. Implications for Lamda-CDM cosmology are considered with H0=84 km s-1 Mpc-1. (Abridged)Comment: 37 pages including 12 tables and 7 figures. Final version accepted for publication in the Journal of Astrophysics & Astronom

    Algorithm 433: interpolation and smooth curve fitting based on local procedures [E2]

    No full text
    corecore